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Abstract. In this paper, we address two key trends in the synthesis of implemen-
tations for embedded multiprocessors — (1) the increasing importance of managing
interprocessor communication (IPC) in an efficient manner, and (2) the acceptance
of significantly longer compilation time by embedded system designers. The former
aspect is evident in the increasing interest among embedded system architects in
innovative communication architectures, such as those involving optical intercon-
nection technologies, and hybrid electro-optical structures [7]. The latter aspect
results because embedded multiprocessor systems are typically designed as fina
implementations for dedicated functions. While multiprocessor mapping strategies
for general-purpose systems are usually designed with low to moderate complexity
as a constraint, embedded system design tools are allowed to employ more thorough
and time-consuming optimization techniques.

1. Introduction

In this paper, we develop novel partitioning and scheduling techniques that
aggressively streamline interprocessor communication. We address the increasing impor-
tance of managing interprocessor communication in an efficient manner. This importance
is due to the increasing interest among embedded system architects in innovative commu-
nication architectures, such as those involving optical interconnection technologies, and
hybrid electro-optical structures[7]. Effective experimentation with unconventional archi-
tectures requires adequate design tool s that can exploit such architectures. We also address
the increased compile time tolerance in embedded system design. This results because
embedded multiprocessor systems are typically designed as final implementations for
dedicated functions; modifications to embedded system implementations are rare, and this
allows embedded system design tools to employ more thorough, time-consuming optimi-
zation techniques. In contrast, multiprocessor mapping strategies for general purpose sys-
tems are typically designed with low to moderate complexity as a constraint.

Our work builds on the two-phased decomposition of multiprocessor scheduling
that was introduced by Sarkar [5], and explored subsequently by other researchers such as
Y ang and Gerasoulis[10]. In this decomposition, the application graph isfirst mapped to a
fully-connected multiprocessor architecture that has an unbounded number of processors.
The goal of mapping here is to minimize the net execution time. In the second phase of
Sarkar’s two-phase process, called merging, the derived schedule is mapped onto the
given resource-constrained architecture. Our use of Sarkar’'s decomposition scheme and
the associated breakdown of scheduling into different phases is motivated by the idea of
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introducing modularity, and hence more flexibility, in alocating compile-time resources
throughout the optimization process. In this paper, we focus on the first phase (clustering) of
this decomposed problem. Algorithms to address second phase have been discussed in [8].

2. Background and Previous Work

In the context of embedded system implementation, one limitation shared by many
scheduling algorithms is that they have been designed for general purpose computation. In the
general-purpose domain, there are many applications for which short compile timeis of major
concern. In such scenarios, it is highly desirable to ensure that an application can be mapped
to an architecture within a matter of seconds. Sarkar’s internalization algorithm (SIA) and the
dominant sequence clustering algorithm (DSC)[10] provide such low complexity algorithms.

However, being deterministic in nature, neither SIA nor DSC can exploit the
increased compile time tolerance in embedded system implementation. There has been some
probabilistic search implementation of scheduling heuristics in the literature, such as genetic
algorithms (GAs), that exploit thisincreased compile time tolerance. Hou et al. [2], Wang and
Korfhage [9], Kwok and Ahmad [4], Zomaya et al. [12], and Correa et a. [1] have proposed
different genetic algorithms in the scheduling context. Hou and Correa use similar integer
string representations of solutions. Wang and Korfhage use atwo-dimensional matrix scheme
to encode the solution. Kwok and Ahmad also use integer string representations, and Zomaya
et al. use amatrix of integer substrings. All of these algorithms have relatively complex solu-
tion representations in the underlying GA formulation. We show that in the context of the
clustering/merging decomposition, we can avoid these complications in the clustering phase,
and use more streamlined solution encodings for clustering.

We have explored a number of approaches for exploiting the increased compile-time tol-
erance in embedded multiprocessor implementation, the first of which applies the concept of
GAs to develop anovel approach for multiprocessor clustering and scheduling. We represent
the applications that are to be mapped into parallel implementations in terms of the widely-
usedtask graph model. A task graph isadirected acyclic graph (DAG) G = (V, E), where
» V isthe set of task nodes, which are in one-to-one correspondence with the computational
tasksin the application ((V = { v, v,, % ,VM} )).

» E isthe set of communication edges (each member is an ordered pair of tasks).

« t:V® A denotes afunction that assigns an execution time to each member of V .

« C:V~ V® A denotesafunction that gives the cost (latency) of each communication edge.
Thatis, C(v,v)° Oforal V; C(vy,v,) = C(v,,v,) fordl v, ,v,;and C(v,,V,) isthe cost
of transferring data between v, and v,, if they are assigned to different processors.

The net execution timeis defined by the following expression:

ty = max(tlevel (v,) + bIeveI(vX)|vXT V), (D)

where tlevel (v,) (blevel(v,)) is the length of the longest path between node v, and the
source (sink) node in the scheduled graph, including all of the communication and computa-
tion costsin that path, but excluding t(v,) fromtlevel(v,) . Here, by the scheduled graph, we
mean the task graph with all known information about clustering and task execution ordering
modeled using additional zero-cost edges. In particular, if v, and v, are clustered together,
and v,, isscheduled to execute immediately after v, , then the edge (v,, v,) isinserted in the
scheduled graph.



3. Solution Representation

We propose a new framework for applying GAs to scheduling problems. Our solu-
tion representation encodes scheduling-related information as a single subset of graph edges
b, with no notion of an ordering among the elements of b. This representation can be used
with awide variety of scheduling and clustering problems. It exploits the view of a clustering
as a subset of edges in the task graph. Gerasoulis and Y ang have suggested this view of clus-
tering in their characterization of certain clustering algorithms as being edge-zeroing algo-
rithms [10]. One of our contributions in this paper is to apply this subset-based view of
clustering to develop a natural, efficient genetic algorithm formulation. For the purpose of a
genetic algorithm, the representation of graph clusterings as subsets of edges is attractive
since subsets have natural and efficient mappings into the framework of genetic algorithms.

Derived from the schema theory (a schema denotes a similarity template that repre-
sents a subset of {0, 1}"), canonical GAs (which use binary representations of solution
spaces) provide near-optimal sampling strategies. Furthermore, binary encodings in which the
semantic interpretations of different bit positions exhibit high symmetry (e.g., in our case,
each bit corresponds to the existence or absence of an edge within a cluster) allow usto lever-
age extensive prior research on genetic operators for symmetric encodings rather than forcing
us to develop specialized, less-thoroughly-tested operators to handle the underlying non sym-
metric representation. Accordingly, our binary encoding scheme is favored both by schema
theory, and significant prior work on genetic operators. Furthermore, by providing no con-
straints on genetic operators, our encoding scheme preserves the natural behavior of GAs.

Our approach to encoding clustering solutions is based on the following definition.
Definition 1: Suppose that b is a subset of task graph edges. Then f, : E® {0,1} denotes
theclusterization function associated with b . Thisfunction is defined by:
iOif(el b
f(e) = | (&1 b

I 1 otherwise
When using a clusterization function to represent a clustering solution, the edge subset b is
taken to be the set of edges that are contained in clusters. An illustration is shown in Figure 1.
Because it is based on using clusterization functions to represent candidate solutions, we refer
to our GA approach as theclusterization function algorithm (CFA).

In the CFA, theinitial population isinitialized with a random selection of clusteriza-
tion functions (mappingsfrom E into { 0, 1} ) and its fitness is evaluated from the net execu-
tion time t, (from (1)). To compute t, , we have applied a modified version of list
scheduling that abandons the restrictions imposed by a global scheduling clock, as proposed
in[6]. More details on our implementation can be found in [3].

)

4. Performance Evaluation and Comparison

In this section, we present an experimental comparison of DSC, SIA and CFA. To be
fair in comparison of these algorithms (DSC and SIA are deterministic heuristics, while our
GA is a guided probabilistic search method), we have implemented randomized versions of
DSC and SIA — each such randomized algorithm, like CFA, can exploit increases in addi-
tional computational resources to explore larger segments of the solution space.

We have incorporated randomization into to the edge selection process when deriv-
ing randomized versions of DSC (RDSC) and SIA (RSIA). In the randomized versions, the
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Figure 1. (a) A clustering of an application graph; (b) the corresponding subset b of “zeroed”
edges; (c) the corresponding clusterization function fb .

first element of the sorted edge list — the candidate to be zeroed — is selected with probabil-
ity p, (wecal p therandomization parameter ); if this element is not chosen, the second ele-
ment is selected with probability p ; and so on, until some element is chosen, or no element is
returned after considering all the elementsin thelist. In thislast case (no element is chosen), a
random number is chosen from a uniform distribution over {01, ¥4, |T| -1} (where T isthe
set of edges that have not yet been clustered). Further details on this general approach to
incorporating randomization into greedy, priority-based algorithms can be found in [11],
which explores randomization techniques in the context of DSP memory management.

Each randomized algorithm begins by first applying the underlying (original) deter-
ministic algorithm, and then repeatedly computing additional solutions with a“degree of ran-
domness’ determined by p. The best solution computed within the allotted compile-time
tolerance (e.g., 10 min., 1 hr., etc.) is returned. The allotted running time for each input graph
to RDSC or RSIA was determined from the CFA running time on the same graphs for 3000
iterations, which allows comparison under equal amounts of running time.

All the heuristics have been tested with two sets of input graphs, DSP-related task
graphs and random graphs (with 50 to 1000 nodes). We have also varied the communication
to computation cost ratio(CCR), between 0.1 to 10 when experimenting with each task graph.
The net execution times of random graphs for all algorithms are shown in Figure 2 (more
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Figure 2. tN of different heuristic and randomized algorithms for random graphs.



results, including those on the DSP-related graphs, can be found in [3]). It can be seen from
the figure that CFA consistently performs significantly better than the other approaches, and
the benefit of the CFA approach increases with increasing CCR values. Overall, for both ran-
dom and application-related graphs, our experimental results [3] show that CFA is preferable
for compile time tolerances that accommodate the underlying GA configuration (less than 1
min. to 10 hrsfor the graphs that we considered in our experiments).

5. Summary and Conclusions

This paper has explored multiprocessor clustering techniques to exploit the increased
compile time tolerance of the embedded systems domain, and achieve efficient mapping of
applications onto multiprocessor architectures. We have developed a novel and natural
genetic algorithm formulation, called CFA, for multiprocessor clustering, as well as random-
ized versions, called RDSC and RSIA, of two well-known deterministic algorithms, DSC [10]
and SIA [5], respectively. RDSC and RSIA perform at least as well as DSC and SIA, but are
ableto exploit arbitrary increases in compile time tolerance due to their incorporation of prob-
abilistic selection. Based on these devel opments, we have performed an extensive experimen-
tal study that compares the aternative strategies under equal amounts of running time
(compile time tolerance). Our experiments have demonstrated that the CFA algorithm signifi-
cantly outperforms RDSC and RSIA, and that the improvement offered by CFA increases
with increasing communication costs in the application relative to the amount of computation.
Thus, CFA is especialy useful when managing communication costs is important. Presently,
we are developing further experiments to quantify these distinctions. Another useful direction
for further work is exploring the integration of merging algorithms into the CFA framework
(e.g., in the fitness eval uation phase).
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